Name \qquad Date \qquad

1. Gloria says the two expressions $\frac{1}{4}(12 x+24)-9 x$ and $-6(x+1)$ are equivalent. Is she correct? Explain how you know.
2. A grocery store has advertised a sale on ice cream. Each carton of any flavor of ice cream costs $\$ 3.79$.
a. If Millie buys a combination of strawberry ice cream and chocolate ice cream cartons, write an algebraic expression that represents the total cost of buying the ice cream.
b. Write an equivalent expression for your answer in part (a).
c. Explain how the expressions are equivalent.
3. A new park was designed to contain two circular gardens. Garden A has a diameter of 50 m , and the garden B has a diameter of 70 m .
a. If the Gardner wants to outline the gardens in edging, how many meters will be needed to outline the smaller garden? (Write in terms of π.)
b. How much more fencing will be needed for the larger garden than the smaller one? (Write in terms of π.)
c. The Gardner wishes to put down weed block fabric on the two gardens before the plants are planted in the ground. How much fabric will be needed to cover the area of both gardens? (Write in terms of π.)
4. A play court on the school playground is shaped like a square joined by a semi-circle. The perimeter around the entire play court is 182.8 ft ., and 62.8 ft . of the total perimeter comes from the semi-circle.

a. What is the radius of the semi-circle?
b. The school wants to cover the play court with sports court flooring. Using 3.14 for π, how many square feet of flooring does the school need to purchase to cover the play court?
5. Marcus drew two adjacent angles.
a. If $\angle A B C$ has a measure one-third of $\angle C B D$, then what is the degree measurement of $\angle C B D$?

b. If $\angle C B D=9(8 x+11)$ degrees, then what is the value of x ?
6. The dimensions of an above-ground, rectangular pool are 25 feet long, 18 feet wide and 6 feet deep.
a. How much water is needed to fill the pool?
b. If there are 7.48 gallons in 1 cubic foot, how many gallons are needed to fill the pool?
c. Assume there was a hole in the pool, and 3366 gallons of water leaked from the pool. How many feet did the water level drop?
d. After the leak was repaired, it was necessary to resurface (lay a thin layer of concrete to protect) the sides of the pool. Calculate the area to be covered to complete the job.
7. Gary is learning about mosaics in Art class. His teacher passes out small square tiles and encourages the students to cut up the tiles in various angles. Gary's first cut tile looks like this:

a. Write an equation relating $\angle T I L$ with $\angle L I E$.
b. Solve for m.
c. What is the measure of $\angle T I L$?
d. What is the measure of $\angle L I E$?

A Progression Toward Mastery

	ssment Item	STEP 1 Missing or incorrect answer and little evidence of reasoning or application of mathematics to solve the problem	STEP 2 Missing or incorrect answer but evidence of some reasoning or application of mathematics to solve the problem	STEP 3 A correct answer with some evidence of reasoning or application of mathematics to solve the problem, or an incorrect answer with substantial evidence of solid reasoning or application of mathematics to solve the problem	STEP 4 A correct answer supported by substantial evidence of solid reasoning or application of mathematics to solve the problem
1	7.EE.A. 1	Student demonstrates a limited understanding of writing expressions in standard form and determining if they are equivalent expressions. Student shows some knowledge of the distributive property.	Student makes a conceptual error in writing one of the expressions in standard form but writes the other expression correctly and an appropriate answer and explanation is provided.	Student writes each expression in correct standard form, $-6 x+6$ and $-6 x-6$. Student indicates the expressions are not equivalent, but no explanation is provided or the explanation is incorrect. Student demonstrates a solid understanding but makes one computational error, such as $-6(x+1)$ is writen as $-6 x+6$ and a correct response is provided as to the expressions being equivalent.	Student writes each expression in correct standard form, $-6 x+6$ and $-6 x-6$. Student indicates the expressions are not equivalent and provides an appropriate explanation.
2	7.EE.A. 2	Student work shows little evidence of correct reasoning, such as $s+c$, but no further work is shown or is incorrect. Student does not demonstrate an understanding of the meaning of writing equivalent expressions	Student makes a conceptual error such as distributing or factoring incorrectly.	Student writes a correct algebraic expression for part (a), an equivalent expression for part (b), but the explanation for part c is incorrect or not shown.	Student writes a correct algebraic expression to represent the total cost of 2 flavors of ice cream, such as $3.79(s+c)$, writes an equivalent expression for part a, such as $3.79 s+3.79 c$, and provides an appropriate explanation on how the expressions are equivalent, such as applying the distributive

Module 3: Date:
$\left.\begin{array}{|c|c|c|l|l|l|}\hline & & & & \begin{array}{l}\text { property. Sample } \\ \text { answers given for parts } \\ \text { (a) and (b) could be }\end{array} \\ \text { reversed and the } \\ \text { explanation would } \\ \text { include factoring the } \\ \text { expression. }\end{array}\right]$

	C 7.G.B. 4	Student does not find the areas of the gardens but adds the total circumferences of both the smaller and larger garden to get 120π.	Student makes a conceptual error such as multiplying the radius by 2 instead of squaring the radius. In this case, the areas would be 140π and 50π. The total is $=190 \pi \mathrm{~m}^{2}$. Student makes two or more computational and/or labeling errors.	Student finds the area of both gardens correctly, in terms of π, as 1225π and 625π, but does not find the total sum for both gardens. Student uses the area formulas correctly but makes one computational or labeling error $\left(m^{2}\right)$. Student finds the correct areas, but does not leave the answer in terms of π and instead uses 3.14, getting an answer of $5809 \mathrm{~m}^{2}$.	Student finds the area of both gardens correctly in terms of π, as 1225π and 625π AND finds the total of fabric needed for both gardens $1850 \pi \mathrm{~m}^{2}$.
4	a $\text { 7.G.B. } 4$	Student answer is incorrect or missing. Student work shows little or no evidence of correct reasoning.	Student makes a conceptual error such as finding circumference or area of the semi-circle but uses the diameter as 20 in doing so.	Student makes a computational error such as dividing incorrectly.	Student correctly determines the radius of the semi-circle of 20 ft . by dividing the diameter of 40 by 2 . Student may have an incorrect answer, but if the incorrect answer given is half of the answer from part (a), then student receives full credit.
	b 7.G.B. 4	Student answer is incorrect or missing. Student work shows little or no evidence of correct reasoning.	Student makes a conceptual error such as using the wrong formulas for area or subtracting the areas as in area of a shaded region. Student makes two or more computational or labeling errors.	Student makes one computational or labeling error. Student finds the correct area of the square , $1,600 \mathrm{ft}^{2}$ and the semicircle, $628 \mathrm{ft}^{2}$ but does not add them to get the total area. Student does not use 3.14 for π as instructed and leaves the area of the semicircle in terms of π. Student finds the area of the square correctly but finds the area of the	Student finds the overall area correctly as 2,228 ft ${ }^{2}$.

				entire circle, not the semicircle, but finishes the question correctly. If so, the answer is $2,856 f t^{2}$.	
5	a $\text { 7.G.B. } 5$	Student work shows little understanding of supplementary angles.	Student makes a conceptual error such as translating the angles incorrectly, but all further work is correct. Student makes two or more computational errors.	Student makes one computational error in solving the equation.	Student correctly defines the variable, translates each angle into algebraic expressions, $\frac{1}{3} m, m$, writes an equation, $\frac{1}{3} m+m=180$, solves the equation correctly, $m=135$, and finds the measure of $\angle C B D, 135^{\circ}$. Students are not limited to using equations to solve this problem. For example, they could also set up an appropriate tape diagram.
	b 7.G.B. 5	Student work shows little evidence of correct reasoning, such as writing an equivalent expression for $9(8 x+11)$ as $72 x+99$, but with no further correct work shown.	Student does not write a correct equation using the answer from part (a) but solves the written equation correctly provided it is of equal difficulty.	Student writes a correct equation based on their answer from part (a) but makes one computational error in solving.	Student uses the answer from part (a) to find the correct value for $x=\frac{1}{2}$. Student may have an incorrect answer but if the equation written is correct based on a wrong answer from part (a) and the equation was solved correctly, then full credit can be given.
6	$\begin{gathered} \text { a } \\ \text { 7.G.B. } 6 \end{gathered}$	Student work shows little evidence of correct reasoning	Student makes a conceptual error such as not finding the volume and finding the surface area incorrectly. Student makes two or more computational and/or labeling errors.	Student uses the volume formula but makes one computational or labeling error.	Student correctly uses the volume formula for a rectangular prism to find how much water is needed to fill the pool, 2,700 $f t^{3}$
	$\begin{gathered} \text { b } \\ \text { 7.G.B. } 6 \end{gathered}$	Student work shows little evidence of correct reasoning, such as adding or subtracting 7.48 or not using the volume form part a.	Student makes a conceptual error such as dividing the volume by 7.48 instead of multiplying. If so, answer would be 361 gallons.	Student knows to use the volume from part a and multiply by 7.48 but makes one computational error.	Student uses his or her answer from part a and multiplies it by 7.48 to find the total number of gallons needed to fill the pool. If part (a) was answered correctly, then

					the correct answer is 20,196 gallons.
	C 7.G.B.6	Student work shows little evidence of correct reasoning. Student finds the correct amount of gallons remaining, 16,830 , but no further work is shown or correct.	Student made a conceptual error such as finding the change in gallons but incorrectly uses the volume formula with gallons. For example, $\begin{gathered} 16830=25 \times 18 \times h \\ h=37.4 \end{gathered}$	Student demonstrates a solid understanding but makes one computational error. Student correctly determines the new height, 5 ft ., after the water leaked but did not find the change in the height.	Student finds the new depth of the pool after the water leaked and determines the change in the height as 1 ft . Student can solve in a number of ways such as finding the number of gallons remaining, dividing by 7.48 to determine the new volume, then setting up an equation such as $2250=25 \times 18 \times h$ to determine the new height and finally, subtracting the height from the original height to get the change. Another approach is to write an equation to find the height of the volume that was lost.
	d 7.G.B.6	Student work shows little evidence of correct reasoning. Student finds the area of one of the sides, either 450,108 , or 150 but no further correct work is shown.	Student makes a conceptual error such as using the wrong area formulas or only finding the area of 3 of the surfaces. Student makes two or more computational or labeling errors.	Student demonstrates a solid understanding of surface area but makes one computational or labeling error. Student gets an answer of $1,416 f t^{2}$ by finding the surface area of all surfaces, including the top base.	Student correctly determines the surface area of the sides to be resurfaced with appropriate work shown. $\begin{aligned} & 25 \times 18+2(6 \times 18) \\ & +2(6 \times 25)=966 f t^{2} \end{aligned}$
7	$\begin{gathered} \text { a, b } \\ \text { 7.G.B. } 5 \end{gathered}$	Student work shows little evidence of correct reasoning. Student writes a correct equation but no further work or correct work is shown.	Student makes a conceptual error writing an incorrect equation for part a but solves it correctly for part b. Student writes a correct equation but makes a conceptual error when solving the equation, such as $2 m-10=90$ $m=50$	Student writes a correct equation but makes one computational error.	Student writes and solves a correct equation, $\begin{gathered} 3 m+m-10=90 \\ m=25 \end{gathered}$ with all appropriate work shown.

| C, d | | Student writes a correct
 equation but makes two
 or more computational
 errors. | Student work shows
 little evidence of
 substituting the value of
 m into the given angle
 measures. Instead,
 student assumes one
 angle is 25° and finds
 the complement for the
 other angle to be 65°. | Student finds one angle
 measure correctly with
 appropriate supporting
 work. | Student makes two or
 more computational
 errors. |
| :---: | :---: | :--- | :--- | :--- | :--- | | Student uses his or her |
| :--- |
| answer from part b |
| replacing the value into |
| the given angle |
| measures $\angle T I L$ and |
| $\angle L I E$ but makes one |
| computational error. |\quad| Student correctly uses |
| :--- |
| his or her answer from |
| part b and substitutes its |
| value into the given |
| angle measures to find |
| the measure of $\angle T I L$ |
| and $\angle L I E$. If the |
| student's answer from |
| part b was correct, then |
| the measure of |
| of $\angle T I L=75^{\circ}$ and |
| $\angle L I E=15^{\circ}$. |

Name \qquad Date \qquad

1. Gloria says the two expressions $\frac{1}{4}(12 x+24)-9 x$ and $-6(x+1)$ are equivalent. Is she correct? Explain how you know.

$$
\begin{array}{ccl}
\frac{1}{4}(12 x+24)-9 x & -6(x+1) & \text { No, Gloria is not correct. } \\
\frac{1}{4}(12 x)+\frac{1}{4}(24)-9 x & (-6)(x)+(-6)(1) & \text { The standard form of } \frac{1}{4}(12 x+24)-9 x \text { is } \\
3 x+6-9 x & -6 x-6 & -6 x+6 \text { and the standard form of }-6(x+1) \\
3 x-9 x+6 & -6 x-6 .-6 x+6 \text { is not equivalent to } \\
-6 x+6 & -6 x-6 .
\end{array}
$$

2. A grocery store has advertised a sale on ice cream. Each flavor ice cream costs $\$ 3.79$.
a. If Millie buys a combination of strawberry ice cream and chocolate ice cream cartons, write an algebraic expression that represents the total cost of buying the ice cream.

$$
3.79(s+c)
$$

b. Write an equivalent expression for your answer in part (a).

$$
379 s+3.79 c
$$

c. Explain how the expressions are equivalent.

Part is the same expression as part with the distributive property applied and in standard form.
3. A new park was designed to contain two circular gardens. Garden A has a diameter of 50 m , and the garden B has a diameter of 70 m .
a. If the Gardner wants to outline the gardens in edging, how many meters will be needed to outline the smaller garden? (Write in terms of π)

$$
\begin{array}{ll}
C=2 \pi r \quad r=\frac{1}{2} \cdot 50=25 & \text { The smaller garden will need } \\
C=2 \pi(25) & 50 \pi m \text { of edging. } \\
C=50 \pi m &
\end{array}
$$

b. How much more fencing will be needed for the larger garden than the smaller one? (Write in terms of π)

$$
\begin{aligned}
& C=2 \pi r \quad r=\frac{1}{2} \cdot 70=35 \quad \text { Larger garden-smallergarden } \\
& 70 \pi \mathrm{~m}-50 \pi \mathrm{~m} \\
& C=2 \pi(35) \quad 20 \pi \mathrm{~m} \\
& C=70 \pi \mathrm{~m} \quad \text { The larger garden needs } 20 \pi \mathrm{mmore} \text { fencing. }
\end{aligned}
$$

c. The Gardner wishes to put down weed block fabric on the two gardens before the plants are planted in the ground. How much fabric will be needed to cover the area of both gardens? (Write in terms of $\pi)$

Alarger $+A_{\text {smaller }}$
$\pi r^{2}+\pi r^{2}$ $\pi(25)^{2}+\pi(5)^{2}$ $1225 \pi+625 \pi$
$1850 \pi \mathrm{~m}^{2}$ of fabric will be needed to cover the area of both gardens.
4. A play court on the school playground is shaped like a square joined by a semi-circle. The perimeter around the entire play court is 182.8 ft ., and the circumference of the semi-circle is 62.8 ft .
a. What is the radius of the semi-circle?

$$
\begin{array}{lc}
\frac{1}{2} C=62.8 & 62.8 \div 3.14 \\
\frac{1}{2}(2 \pi r)=62.8 & 3.14 \frac{\sqrt{62.80}}{}=20 \quad r=20 \mathrm{ft} \\
\pi r=62.8 & \frac{6288}{00}
\end{array} \quad \text { The radius of the semi-circle is } 20 \mathrm{ft}
$$

b. The school wants to cover the play court with sports court flooring. Using 3.14 for π, how many square feet of flooring does the school need to purchase to cover the play court?
Areasquare + Areasemicicte

$$
\begin{array}{ll}
S \cdot S+\frac{1}{2}\left(\pi r^{2}\right) & \\
40 \cdot 40+\frac{1}{2}\left(3.14(20)^{2}\right) & \text { The school needs to } \\
1600+\frac{1}{2}(3.14(400)) & \text { to cover } 2,228 \mathrm{ft}^{2} . \\
1600+200(3.14) & \\
1600+628 & \\
2228
\end{array}
$$

$$
\begin{aligned}
& S \cdot S+\frac{1}{2}\left(\pi r^{2}\right) \\
& 40 \cdot 40+\frac{1}{2}\left(3.14(20)^{2}\right)
\end{aligned} \quad \text { The school needs to purchase enough flooring }
$$

5. Marcus drew two adjacent angles.
a. If $\angle A B C$ has a measure one-third of $\angle \mathrm{CBD}$, then what is the degree measurement of $\angle \mathrm{CBD}$?

Let m bethe measure of $\angle C B D$ in degrees.	
$\angle A B C+\angle C B D$	$=180$
$\frac{1}{3} m+m$	$=180$
$1 \frac{1}{3} m$	$=180$
$\left(\frac{3}{4}\right) \frac{4}{3} m$	$=180\left(\frac{3}{4}\right)$
m	$=135$

b. If $\angle \mathrm{CBD}=9(8 \mathrm{x}+11)$, then what is the value of x ?

$$
\begin{aligned}
& 135=9(8 x+11) \\
& 135=9(8 x+11) \\
& 135=72 x+99 \\
& 135 \times \frac{1}{9}=9(8 x+11) \times \frac{1}{9} \\
& 135-99=72 x+99-99 \text { or } \\
& 36=72 x \\
& 15=8 x+11 \\
& 15-11=8 x+11-11 \\
& 36 \cdot \frac{1}{72}=72 x \cdot \frac{1}{72} \\
& x=\frac{1}{2} \\
& \begin{aligned}
4 & =8 x \\
4 \cdot \frac{1}{8} & =8 x \cdot \frac{1}{8} \\
\frac{1}{2} & =x
\end{aligned}
\end{aligned}
$$

6. The dimensions of an above-ground, rectangular pool are 25 feet long, 18 feet wide and 6 feet deep.
a. How much water is needed to fill the pool?

$$
\begin{aligned}
& V=l \cdot W \cdot h \\
& =25.18 .6 \\
& =2,700 \mathrm{ft}^{3} \\
& 25 \times 6=150 \\
& \begin{array}{r}
150 \\
\times 155 \\
\frac{150}{200} \\
\frac{1500}{2,700}
\end{array}
\end{aligned}
$$

b. If there are 7.48 gallons in 1 cubic foot, how many gallons are needed to fill the pool?

$$
\begin{array}{r}
2,700 \\
\times \quad 7.48 \\
21600 \\
108000 \\
\frac{1890000}{20196.00}
\end{array} \text { Tollthe pool, 20,196 gallons are needed. }
$$

c. Assume there was a hole in the pool, and 3366 gallons of water leaked from the pool. How many feet did the water level drop?

d. After the leak was repaired, it was necessary to resurface (lay a thin layer of concrete to protect) the sides of the pool. Calculate the area to be covered to complete the job.

$$
\begin{aligned}
& \text { Area to be resurfaced = surface area - Area of one of the bases } \\
& \text { Base }=25 \times 8 \quad \text { Lateral faces: }(2)(6 \cdot 18) \text { and }(2)(6 \cdot 25) \\
& \qquad \begin{array}{r}
(25 \cdot 18)+2(6 \cdot 18)+2(6 \cdot 25) \\
450
\end{array}+2(108)+2(150) \\
& 450+216+300 \\
& \text { ql }
\end{aligned}
$$

7. Gary is learning about mosaics in Art class. His teacher passes out small square tiles and encourages the students to cut up the tiles in various angles. Gary's first cut tile looks like this:

a. Write an equation relating $\angle T I L$ with $\angle L I E$.

$$
3 m+(m-10)=90
$$

b. Solve for m.

$$
\begin{aligned}
3 m+(m-10) & =90 \\
3 m+m-10 & =90 \\
4 m-10 & =90 \\
4 m-10+10 & =90+10 \\
4 m & =100 \\
4 m-\frac{1}{4} & =100 \cdot \frac{1}{4} \\
m & =25
\end{aligned}
$$

c. What is the measure of $\angle T I L$?
$3 m$
$3(25)=75$
Themeasure of LTIL is 75°
d. What is the measure of $\angle L I E$?

$$
\begin{aligned}
& m-10 \\
& 25-10=15 \\
& \text { Themeasure of } \angle \text { LIE is } 15^{\circ}
\end{aligned}
$$

