Lesson 4

Objective: Use exponents to denote powers of 10 with application to metric conversions.

Related Topics: More Lesson Plans for the Common Core Math

Suggested Lesson Structure

Total Time	(60 minutes)
Student Debrief	(10 minutes)
Concept Development	(30 minutes)
Application Problems	(8 minutes)
Fluency Practice	(12 minutes)

Fluency Practice (12 minutes)

 Multiply and Divide Decimals by 10, 100, 	
and 1000 5.NBT.2	(5 minutes)
 Write the Unit as a Decimal 5.NBT.1 	(2 minutes)
 Write in Exponential Form 5.NBT.2 	(3 minutes)
Convert Units 4.MD.1	(2 minutes)

Multiply and Divide Decimals by 10, 100, and 1000 (5 minutes)

Materials: (S) Personal white boards

Note: This fluency drill will review concepts taught in earlier lessons and help students work towards mastery in multiplying and dividing decimals by 10, 100, and 1000.

- T: (Project place value chart from millions to thousandths. Write 3 disks in the tens column, 2 disks in the ones column, and 4 disks in the tenths column.) Say the value as a decimal.
- S: 32.4 (thirty-two and four tenths).
- T: Write the number on your personal boards and multiply it by ten.

Students write 32.4 on their place value charts, cross out each digit, and shift the number one place value to the left to show 324.

T: Show 32.4 divided by 10.

Students write 32.4 on their place value charts, cross out each digit, and shift the number one place value to the right to show 3.24.

Repeat the process and sequence for 32.4 x 100; 32.4 ÷ 100; 837 ÷ 1000; and 0.418 x 1000.

Use exponents to denote powers of 10 with application to metric conversions. 4/1/14

Write the Unit as a Decimal (2 minutes)

Materials: (S) Personal white boards

Note: Reviewing these skills will help students work towards mastery of decimal place value, which will in turn help them apply their place value skills to more difficult concepts.

- T: 9 tenths.
- S: 0.9
- T: 10 tenths.
- S: 1.0

Repeat the process for 20 tenths, 30 tenths, 70 tenths, 9 hundredths, 10 hundredths, 11 hundredths, 17 hundredths, 57 hundredths, 42 hundredths, 9 thousandths, 10 thousandths, 20 thousandths, 60 thousandths, 64 thousandths, and 83 thousandths.

Write in Exponential Form (3 minutes)

Materials: (S) Personal white boards

Note: Reviewing this skill in isolation will lay a foundation for students to apply the skill in multiplication during the lesson.

- T: (Write $100 = 10^{?}$.) Write 100 in exponential form.
- S: (Students write $100 = 10^2$.)

Repeat the process for 1000, 10,000, and 1,000,000.

Convert Units (2 minutes)

Materials: (S) Personal white boards

Note: Reviewing conversions in isolation will lay a foundation for students to apply this knowledge through multiplication and division during the lesson.

Use this quick fluency to activate prior knowledge of these familiar equivalents.

- T: (Write 1 km = ____ m.) Fill in the missing number.
- S: (Students write 1 km = 1000 m.)

Repeat process and procedure for 1 kg = ____ g, 1 liter = ____ mL, 1 m = ____ cm.

4/1/14

Use exponents to denote powers of 10 with application to metric conversions.

(cc) BY-NC-SA

This work is licensed under a

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Consider posting a class-size place value chart as an aid to students in visualizing the unit work of this fluency activity.

It may also be fruitful to have students verbalize their reasoning about the equivalence of 10 tenths to 1.0, 20 tenths to 2.0, etc.

NOTES ON

MULTIPLE MEANS

As discussions ensue about conversions

from meters to kilometers, centimeters

and millimeters, take the opportunity

to extend thinking by asking students

1/10 as large as a meter (decimeter) and the unit 10 times as large

units or do research about these and

commonly used. Students might also

applications for the less familiar units.

(decameter). Students can make predictions about the names of these

other metric units that are less

make connections to real world mathematics by investigating industry

to make a conversion to the unit that is

OF ACTION AND ENGAGEMENT:

Application Problem (8 minutes)

Mr. Brown wants to withdraw \$1,000 from his bank and in ten dollar bills. How many ten dollar bills should he receive?

Note: Use this problem with a familiar context of money to help students begin to use various units to rename the same quantity—the focus of today's lesson.

Concept Development (30 minutes)

Materials: (S) Meter strip, markers

Each problem set below includes conversions both from larger to smaller units and smaller to larger units. Allow students the time to reason about how the change in the size of the unit will affect the quantity of units needed to express an equivalent measure rather than giving rules about whether to multiply or divide.

Problem 1

MP.3

Draw a line that is 2 meters long and convert it to centimeters and millimeters.

- T: Draw a line 2 meters long.
- S: (Students draw.)
- T: With your partner, determine how many centimeters equal 2 meters.
- S: 200 centimeters.
- T: How is it that the same line can measure both 2 meters and 200 centimeters?
- T: Discuss with a partner how we convert from 2 meters to 200 centimeters?
- S: (After talking with a partner.) Multiply by 100.
- T: Why didn't the length change? Discuss that with your partner.

Repeat the same sequence with millimeters.

T: Can we represent the conversion from meters to centimeters or meters to millimeters with exponents? Discuss this with your partner.

Let them see that to convert to centimeters from meters, we multiplied by 10², while to convert from meters to millimeters we multiplied by 10^3 . Repeat the same sequence in reverse so that students see that to convert from centimeters to meters we divide by 10^2 and to convert from millimeters to meters we divide by 10³. If there seems to be a large lack of clarity do another conversion with 1 meter or 3 meters.

Lesson 4: Date:

Use exponents to denote powers of 10 with application to metric conversions. 4/1/14

© 2013 Common Core, Inc. Some rights reserved. commoncore.org

This work is licensed under a (cc) BY-NC-SA Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License

Problem 2

Convert 1.37 meters to centimeters and millimeters.

- T: Draw a line 1 meter 37 centimeters long.
- S: (Students draw.)
- T: What fraction of a whole meter is 37 centimeters?
- S: 37 hundredths.
- T: Write 1 and 37 hundredths as a decimal fraction.
- T: With your partner, determine how many centimeters is equal to 1.37 meters both by looking at your meter strip and line and writing an equation using an exponent.
- T: What is the equivalent measure in centimeters?
- S: 137 centimeters.
- T: Show the conversion using an equation with an exponent.
- S: $1.37 \text{ meters} = 1.37 \times 10^2 = 137 \text{ centimeters}.$
- T: What is the conversion factor?
- S: 10² or 100.

Repeat the sequence with conversion to millimeters, both with multiplication by 10^3 and division by 10^3 , 2.6, and 12.08.

Problem 3

MP.4

MP.5

A cat weighs 4.5 kilograms. Convert its weight to grams. A dog weighs 6700 grams. Convert its weight to kilograms.

- T: Work with a partner to find both the cat's weight in grams and the dog's weight in kilograms. Explain your reasoning with an equation using an exponent for each problem.
- S: (Students solve.) $4.5 \text{ kg x } 10^3 = 4500 \text{g}$ and $6700 \text{ g} \div 10^3 = 6.7 \text{ kg}$.
- T: What is the conversion factor for both problems?
- S: 10³ or 1000.

Repeat this sequence with 2.75 kg to g, and then 6007 g to 6.007 kg and the analogous conversion dividing grams by 10^3 to find the equivalent amount of kilograms.

T: Let's relate our meter to millimeter measurements to our kilogram to gram conversions.

The most important concept is the equivalence of the two measurements—that is, the weight measurement, like that of the linear measurement, did not change. The change in the type of unit precipitates a change in the number of units. However, the weight has remained the same. Clarify this understanding before moving on to finding the conversion equation by asking, "How can 6007 and 6.007 be equal to each other?" (While the numeric values differ, the unit size is also different. 6007 is grams. 6.007 is kilograms. Kilograms are 1000 times as large as grams. Therefore it takes a lot fewer kilograms to make the same amount as something measured in grams.) Then, lead students to articulate that conversions from largest to smallest units we multiplied by 10³, to convert from smallest to largest, we need to divide by 10³.

Lesson 4: Date: Use exponents to denote powers of 10 with application to metric conversions. 4/1/14

CC BY-NC-SA

Problem 4

 $0.6 \text{ L} \times 10^3 = 600 \text{ mL}; 0.6 \times 10^2; 764 \text{ mL} \div 10^3 = 0.764 \text{ liters}$

- a. The baker uses 0.6 liter of vegetable oil to bake brownies. How many milliliters of vegetable oil did he use? He is asked to make 100 batches for a customer. How many liters of oil will he need?
- b. After gym class, Mei Ling drank 764 milliliters of water. How many liters of water did she drink?

After solving the baker problem, have students share about what they notice with the measurement conversions thus far.

S: To convert from kilometers to meters, kilograms to grams, liters to milliliters, we multiplied by a conversion factor of 1000 to get the answer.

→ We multiply with a conversion factor of 100 to convert from meters to centimeters. → When we multiply by 1000, our number shifts 3 spaces to the left on the place value chart. When we divide by 1000, the number shifts 3 spaces to the right. → The smaller the unit is, the bigger the quantity we need to make the same measurement.

Repeat this sequence, converting 1,045 mL to liters and 0.008 L to milliliters. Ask students to make comparisons between and among conversions and conversion factors.

Problem Set (10 minutes)

Students should do their personal best to complete the problem set within the allotted 10 minutes. For some classes, it may be appropriate to modify the assignment by specifying which problems they work on first. Some problems do not specify a method for solving. Students solve these problems using the RDW approach used for Application Problems.

In this Problem Set, we suggest all students begin with Problem 1 and leave Problem 6 to the end if they have time.

Student Debrief (10 minutes)

Lesson Objective: Use exponents to denote powers of 10 and with application to metric conversions.

The Student Debrief is intended to invite reflection and active processing of the total lesson experience.

Invite students to review their solutions for the Problem Set. They should check work by comparing answers with a partner before going over answers as a class. Look for misconceptions or misunderstandings that can be addressed in the Debrief. Guide students in a conversation to debrief the worksheet and process the

Name Key	vin		D	ate3/6
1. Convert	the larger metri	c units into smaller metric u	inits.	
a)	Convert 3 met	ers to centimeters.	3 m ×	<u>100</u> = <u>300</u> cm
b)	Convert 0.9 me	eters to centimeters.	0.9 m ×	1 <u>60</u> = <u>90</u> cm
c)	Convert 8.1 lite	ers to milli-liters	8.1 L ×	1.000 = 8,100 mL
d)	Convert 0.537	liters to milli-liters.	0.537 L ×	<u>6000 = 537 mL</u>
e)	Convert 90.5 k	ilometers to meters	90.5 km ×	1,000 = 90,500 m
f)	Convert 0.234	km to meters.	0.234 km	× (<u>1000 = 234</u> m
g)	Convert 6.4 kil	ograms to grams	6.4 kg × _	1.000 = 6.400 g
h)	Convert 0.6 kill	ograms to grams	0.6 kg × _	1,000 = <u>600 g</u>
i)				different conversion factor (x 100)
A	than convertin 1000). Express meder is	g from liters to milliliters, ki the conversions (g) and (h) 100 fimes greater th	lometers to mel above using exp nanी a. Confi	ters, and kilograms to grams (x nonents. meter , so you muttiply by 100.
A	than convertin 1000). Express meter is 1:4er is 1000	g from liters to milliliters, ki the conversions (g) and (h) 100 times greater th o times greater than	lometers to met above using exp nant a contin a mailaither	sers, and kilograms to grams (x soments. neter , so you Muttiply by 100. and a Kilogram and Kilometer
A A are l	than convertin 1000). Express meter is 1. ter is 1000 .000 times gri	g from liters to milliliters, ki the conversions (g) and (h) 100 times greater th is times greater than enter then a grow co	lometers to met above using exp north a contrib a maillaiter d meter,	iers, and kilograms to grams (x ionents. neter , so you muttiply by 100, and a Kilogram and Kilonuter
A A Gre I, 2. Read eac	than convertin 1000). Express meter is 1. ter is 1000 .000 times gri	g from liters to milliliters, ki the conversions (g) and (h) 100 fines greater th 5 fines greater than ender then a grow co rite the equivalent measure	lometers to met above using exp national contri a mailaiter d mater, es.	sers, and kilograms to grams (x soments. neter , so you Muttiply by 100. and a Kilogram and Kilometer
A A Gre I, 2. Read eac a)	than convertin 1000). Express meter is literis loco .000 times gra- th aloud as you w	g from liters to milliliters, ki the conversions (g) and (h) 100 times greater th is times greater than enter then a grow co	lometers to met above using exp hant a contro a maillaister d meter, es.	ters, and kilograms to grams (x onents. neter , so goor neutriphy by 100, evid α Kilogram and Filoneter 9) 6, 4eg × 10 ³ = 6, 400 g
A A Gre I, 2. Read eac a) b)	than convertin 1000). Express meter is 1. ter is food .000 -fines gra- th aloud as you w 3.5 km =	g from liters to milliliters, ki the conversions (g) and (h) 100 fines granter th o fines granter than acter than a gran a rite the equivalent measure <u>3 km 500 m</u>	lometers to met above using exp hant a contro a maillaister d meter, es.	ters, and kilograms to grams (x onents. neter , so goor neutriphy by 100, evid α Kilogram and Filoneter 9) 6, 4eg × 10 ³ = 6, 400 g
A A Gre I, 2. Read eac a) b) c)	than convertin 1000). Express meter is liter is looc 000 - Hines gra- thaloud as you w 3.5 km = 1.23 L = 2.002 kg =	g from liters to milliliters, ki the conversions (g) and (h) 100 finnes growter that o finnes growter that easter than a grow co write the equivalent measure km 500 m 1 1230 m	lometers to met above using exp hant a contro a maillaister d meter, es.	ters, and kilograms to grams (x onents. neter , so goor neutriphy by 100, evid α Kilogram and Filoneter 9) 6, 4eg × 10 ³ = 6, 400 g
A A Gre I, 2. Read eac a) b) c) d)	than convertin 1000). Express meter is liter is looc 000 - Hines gra- thaloud as you w 3.5 km = 1.23 L = 2.002 kg =	g from liters to milliliters, ki the conversions (g) and (h) 100 times greater th 5 times greater than and/or then a gream can rite the equivalent measure $\frac{3}{1200}$ km $\frac{500}{200}$ m $\frac{1230}{2}$ kg $\frac{2}{2}$ g	lometers to met above using exp hant a contro a maillaister d meter, es.	ters, and kilograms to grams (x onents. neter , so goor neutriphy by 100, evid α Kilogram and Filoneter 9) 6, 4eg × 10 ³ = 6, 400 g
A A Gre I, 2. Read eac a) b) c) d)	than convertin 1000). Express meter is 1. ter is 1000 000 times gra- th aloud as you w 3.5 km = 1.23 L = 2.002 kg = 3 mL =	g from Iters to milliters, is known of the conversions (g) and (h) 100 fixes greater the order than a grow a crite the equivalent measure $\frac{3}{1200}$ m $\frac{500}{1200}$ m $\frac{2}{1200}$ m $\frac{2}{1200}$ m $\frac{2}{1200}$ m $\frac{2}{1200}$ m $\frac{2}{1200}$ m $\frac{2}{1200}$ m $\frac{2}{300}$ kg $\frac{2}{1200}$ g	lometers to met above using exp hant a contro a maillaister d meter, es.	ters, and kilograms to grams (x onents. neter , so goor neutriphy by 100, evid α Kilogram and Filoneter 9) 6, 4eg × 10 ³ = 6, 400 g
A A Gre I, 2. Read eac a) b) c) d)	than convertin 1000). Express meter is 1. ter is 1000 000 - Hines gru- th aloud as you w 3.5 km = 1.23 L = 2.002 kg = 3 mL = 3012 g =	g from Iters to milliters, is known of the conversions (g) and (h) 100 fixes greater the order than a grow a crite the equivalent measure $\frac{3}{1200}$ m $\frac{500}{1200}$ m $\frac{2}{1200}$ m $\frac{2}{1200}$ m $\frac{2}{1200}$ m $\frac{2}{1200}$ m $\frac{2}{1200}$ m $\frac{2}{1200}$ m $\frac{2}{300}$ kg $\frac{2}{1200}$ g	lometers to met above using exp hant a contro a maillaister d meter, es.	ters, and kilograms to grams (x onents. neter , so goor neutriphy by 100, evid α Kilogram and Filoneter 9) 6, 4eg × 10 ³ = 6, 400 g

Lesson 4:

Use exponents to denote powers of 10 with application to metric conversions. 4/1/14

lesson. You may choose to use any combination of the questions below to lead the discussion.

- Reflect on the kinds of thinking you did on Task 1 and Task 2. How are they alike? How are they different?
- How did you convert centimeters to meters? What is the conversion factor?
- How did you convert meters to centimeters? What is the conversion factor?
- In Task 3, how did you convert from meters to millimeters? What conversion factor did you use?
- What can you conclude about the operation you use when converting from a small unit to a large unit? When converting from a large unit to a small unit?
- Students might journal about the meanings of centi-, milli- and even other units like deci- and deca-.
- Which is easier for you to think about: converting from larger to smaller units or smaller to larger units? Why? What is the difference in the thinking required to do each?

Exit Ticket (3 minutes)

After the Student Debrief, instruct students to complete the Exit Ticket. A review of their work will help you assess the students' understanding of the concepts that were presented in the lesson today and plan more effectively for future lessons. You may read the questions aloud to the students.

NYS COMMON CORE MATHEMATICS	CURRICULUM	La Sector
m of ribbon. She also needs 32	und 10 flower arrangements for a party. Each arrangeme 5 cm of ribbon to tie to the balloons for the party. If Katri 16 so, how much tibbon (in meters) will she have left? If no need to buy?	na buys 15 m of
K's ribbon 1.2	1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	1.2×10=12m
	3.25m	325 - 100 = 3.25m
12.00 + 3.25 15.25 r	Katrina worit have ribbon. She nud: 0.25m more.	enough s to buy
COMMON Lesson 4. CORE Date: 5.212 Govern Dr. 4. defensered antereseren	ther exponents to denote powers of 10 with application to metric conversions.	ugage ^{ny} 149

Lesson 4

1

The boys

engage^{ny}

dnink 5.4 L

1.A.8

altogether

IYS COMMON CORE MATHEMATICS CURRICULU

1++

b. Explain your thinking using an equ

COMMON CORE

Date:

+.75m = 4750 mm

4.75 × 103 = 4750

4. A honey bee's length measures 1 cm. Express this measurement in meters

ur thinking using a place value chart.

0 0 1

 $1 \div 10^2 = 0.01$

James BOOMLX 3 = 2400mL = 2.4L

Henry 600 mLx 5 = 3000 mL = 3.0 L

The length of the bar for a high jump competition must always be 4.75 m. Express this measurement in millimeters. Explain your thinking using an equation that includes an exponent.

James drinks 800 ml of water each day during his workout. Henry drinks 600 ml daily during his workout If James works out 3 days each week, and Henry works out 5 days each week, how many liters do the boys drink in all each week while working out?

1 cm = 0.01 m

1cm = 0.01m

5.4L

Lesson 4: Date:

4/1/14

Use exponents to denote powers of 10 with application to metric conversions.

Name			Date	
1.	Con	vert using an equation with an exponent.		
	a.	3 meters to centimeters	= _	cm
	b.	900 centimeters to meters	= _	m
	с.	8.1 liters to milliliters	=	mL
	d.	537 milliliters to liters	=	L
	e.	90.5 kilometers to meters	= _	m
	f.	Convert 23 meters to kilometers.	= _	km
	g.	0.4 kilograms to grams	= _	g
	h.	80 grams to kilograms	= _	kg

- Circle the conversion factor in each equation above. Explain why converting from meters to i. centimeters uses a different conversion factor than converting from liters to milliliters, kilometers to meters, and kilograms to grams.
- 2. Read each aloud as you write the equivalent measures.
 - _____ km _____ m a. 3.5 km =
 - b. 1.23 L = _____L ____mL
 - c. 2.002 kg = _____kg _____g
 - d. 3 mL = _____ L
 - _____ kg e. 3012 g =
 - f. _____ m = 2.10 cm

Lesson 4:

Use exponents to denote powers of 10 with application to metric conversions. 4/1/14

3. The length of the bar for a high jump competition must always be 4.75 m. Express this measurement in millimeters. Explain your thinking using an equation that includes an exponent.

- 4. A honey bee's length measures 1 cm. Express this measurement in meters.
 - a. Explain your thinking using a place value chart.

b. Explain your thinking using an equation that includes an exponent.

5. James drinks 800 mL of water each day during his workout. Henry drinks 600 mL daily during his workout. If James works out 3 days each week, and Henry works out 5 days each week, how many liters do the boys drink in all each week while working out?

Lesson 4:

4/1/14

Use exponents to denote powers of 10 with application to metric conversions.

1.A.51

© 2013 Common Core, Inc. Some rights reserved. commoncore.org

(cc) BY-NC-SA

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. 6. Katrina needs to tie ribbons around 10 flower arrangements for a party. Each arrangement requires 1.2 m of ribbon. She also needs 325 cm of ribbon to tie to the balloons for the party. If Katrina buys 15 m of ribbon, will she have enough? If so, how much ribbon (in meters) will she have left? If not, how many more meters of ribbon will she need to buy?

Lesson 4:

Use exponents to denote powers of 10 with application to metric conversions. 4/1/14

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Name			Date		
1.	Cor	nvert:			
	a.	2 meters to centimeters	2 m × = cm		
	b.	40 milliliters to liters	40 mL÷E		

- 2. Read each aloud as you write the equivalent measures.
 - a. 4.371= _____L ____mL
 - _____ kg _____ g b. 81.62 kg =

Lesson 4:

4/1/14

Use exponents to denote powers of 10 with application to metric conversions.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

NYS COMMON CORE MATHEMATICS CURRICULUM

Na	Name			Date		
1.		nvert:				
	a.	5 meters to centimeters	5 m ×	_ =	cm	
	b.	60 centimeters to meters	60 cm ÷	_ =	m	
	c.	2300 milliliters to liters.	2300 mL ÷	= _	L	
	d.	0.462 liters to milliliters	0.462 L ×	_ =	mL	
	e.	80.4 kilometers to meters		=	m	
	f.	0.725 kilometers to meters		=	m	
	g.	456 grams to kilograms		=	kg	
	h.	0.3 kilograms to grams		=	g	

- 2. Read each aloud as you write the equivalent measures.
 - _____ km _____ m a. 2.7 km =
 - _____L____mL b. 3.46 L =
 - _____ kg _____ g c. 5.005 kg =
 - _____ L d. 8 mL =
 - _____ kg e. 4079 g =

Lesson 4:

4/1/14

Use exponents to denote powers of 10 with application to metric conversions.

1.A.54

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

- 3. A dining room table measures 1.78 m long. Express this measurement in millimeters.
 - a. Explain your thinking using a place value chart.

b. Explain your thinking using an equation that includes an exponent.

4. Eric and YiTing commute to school every day. Eric walks 0.81 km and YiTing walks 0.65 km. How far did each of them walk in meters? Explain your answer using an equation that includes an exponent.

5. There were 9 children at a birthday party. Each child drank one 200 mL juice box. How many liters of juice did they drink altogether? Explain your answer using an equation that includes an exponent.

Lesson 4:

4/1/14

Use exponents to denote powers of 10 with application to metric conversions.

