Lesson 21

Objective: Estimate sums and differences of measurements by rounding, and then solve mixed word problems.
Related Topics: More Lesson Plans for the Common Core Math

Suggested Lesson Structure

\square	Fluency Practice
Application Problem	(13 minutes)
\square Concept Developmentes)	
(32 minutes)	
Student Debrief	$(10$ minutes)
Total Time	$(60$ minutes)

Fluency Practice (13 minutes)

- Group Counting 3.OA. 1 (4 minutes)
- Use Algorithms with Different Units 3.MD. 2 (5 minutes)
- Estimate and Subtract 3.NBT. 2 (4 minutes)

Group Counting (4 minutes)

Note: Group counting reviews interpreting multiplication as repeated addition. It reviews foundational strategies for multiplication from Module 1 and anticipates Module 3.

Direct students to count forward and backward, occasionally changing the direction of the count.

- Threes to 30
- Fours to 40
- Sixes to 60
- Sevens to 70
- Eights to 80
- Nines to 90

As students' fluency with skip-counting improves, help them make a connection to multiplication by tracking the number of groups they count using their fingers.

Use Algorithms with Different Units (5 minutes)

Materials: (S) Personal white boards
Note: This activity reviews addition and subtraction using the standard algorithm.

T: (Write $495 \mathrm{~L}+126 \mathrm{~L}=$ \qquad .) On your boards, solve using the standard algorithm.

Repeat the process outlined in G3-M2-Lessons 17, 19, and 20, using the following suggested sequence:
$368 \mathrm{~cm}+132 \mathrm{~cm}, 479 \mathrm{~cm}+221 \mathrm{~cm}, 532 \mathrm{~cm}+368 \mathrm{~cm}, 870 \mathrm{~L}-39 \mathrm{~L}, 870 \mathrm{~L}-439 \mathrm{~L}, 807 \mathrm{~g}-45 \mathrm{~g}, 807 \mathrm{~g}-445 \mathrm{~g}$.

Estimate and Subtract (4 minutes)

Materials: (S) Personal white boards
Note: This activity reviews rounding to estimate differences from Lesson 20.
T: (Write 71-23 \approx \qquad .) Say the subtraction sentence.
S: 71-23.
T: Say the subtraction sentence, rounding each to the nearest ten.
S: 70-20.
T: (Write 71-23 $\approx 70-20$.) What's $70-20$?
S: 50.
T: So 71-23 should be close to?
S: 50.
T: On your boards, answer 71-23.
S: (Solve.)
Continue with the following suggested sequence: 47-18, 574 182, 704 - 187.

Application Problem (5 minutes)

Project the following problem:
Gloria fills water balloons with 238 mL of water. How many milliliters of water are in 2 water balloons? Estimate to the nearest 10 mL and 100 mL . Which gives a closer estimate?

```
Partner 1 Partner 2
238mL\approx240mL 238mL\approx200mL
240+240=480\textrm{mL}}\quad200\textrm{mL}+200\textrm{mL}=400\textrm{mL
```



```
There are 476 mL in
2 balloons.
Rounding to the nearest 10
gives a closer estimate
than rounding to the nearest
100.
```


NOTES ON
 APPLICATION PROBLEM:

You can have students complete the problem in partners so that Partner 1 rounds to the nearest ten and Partner 2 rounds to the nearest hundred-it's a more time-efficient way of having both estimates to compare the actual answer.

Note: This problem reviews Lesson 17 by having students round to estimate sums and then calculate the actual answer. It reviews addition because this lesson includes mixed practice with addition and subtraction.

Concept Development (32 minutes)

Materials: See complete description below.

Problems 1-3 of the Problem Set:
Each table has the premeasured items and measurement tools listed below. Students work together to measure weight, length, and capacity.

Next, they round to estimate sums and differences, then use the standard algorithm to solve. Determine whether students work in pairs, groups, or individually based on ability. Students should use their estimates to assess the reasonableness of actual answers.

Student Directions: Follow the Problem Set directions to complete Problems 1-3 with your table. Once you have finished those problems, do Problem 4 on your own.

NOTES ON
MULTIPLE MEANS FOR
ACTION AND
EXPRESSIONS:
English language learners and others will benefit from a demonstration of the procedure, as well as a review of behavior norms. For example, how will turns be recognized? What can you say to request the use of a tool? What is each tool called?
Working in pairs may be to the advantage of English language learners because it provides an opportunity to speak about math in English.

Materials Description (per table)
Problem 1: 1 digital scale, 1 bag of rice premeasured at 58 grams, 1 bag of beans premeasured at 91 grams

Problem 2: 1 meter stick, labeled Yarn A, B, and C (Yarn A premeasured at 64 cm , Yarn B premeasured at 88 cm , Yarn C premeasured at 38 cm)
Problem 3: 1400 -milliliter beaker, Container D premeasured at 212 mL , Container E premeasured at 238 mL , Container F premeasured at 195 mL
Problem 4: No additional materials

Student Debrief (10 minutes)

Lesson Objective: Estimate sums and differences of measurements by rounding, and then solve mixed word problems.

The Student Debrief is intended to invite reflection and active processing of the total lesson experience. Invite students to review their solutions for the Problem Set. They should check work by comparing answers with a
 partner before going over answers as a class.

Look for misconceptions or misunderstandings that can be addressed in the Debrief. Guide students in a conversation to debrief the Problem Set and process the lesson. You may choose to use any combination of the questions below to lead the discussion.

- How can you use measurement as a tool for checking whether or not your answers are reasonable?
- How did you use mental math in today's lesson? How did the Application Problem prepare you for today's Problem Set?
- How does the fluency relate to your work today?

Exit Ticket (3 minutes)

After the Student Debrief, instruct students to complete the Exit Ticket. A review of their work will help you assess the students' understanding of the concepts that were presented in the lesson today and plan more effectively for future lessons. You may read the questions aloud to the students.

Name \qquad Date \qquad

1. Weigh the bags of beans and rice on the scale. Then write the weight on the scales below.

a. Estimate, and then find the total weight of the beans and rice.

Estimate: \qquad $+$ \qquad \approx \qquad $+$ \qquad $=$ \qquad

Actual: \qquad $+$ \qquad $=$ \qquad
b. Estimate, and then find the difference between the weight of the beans and rice.

Estimate: \qquad - \qquad \approx \qquad - \qquad $=$ \qquad

Actual: \qquad - \qquad $=$ \qquad
c. Are your answers reasonable? Explain why.
2. Measure the lengths of the 3 pieces of yarn.
a. Estimate, and then find the total length of Yarn A and Yarn C.

Yarn A	$\mathrm{cm} \approx \ldots \quad \mathrm{cm}$
Yarn B	$\quad \mathrm{cm} \approx \ldots \quad \mathrm{cm}$
Yarn C	$\mathrm{cm} \approx \ldots \quad \mathrm{cm}$

b. Estimate, and then subtract the length of Yarn B from the total length of Yarn A and Yarn C. Model the problem with a tape diagram.
3. Plot the capacity of the 3 containers on the number lines below. Then round to the nearest 10 milliliters.

COMMON CORE
a. Estimate, and then find the total amount of liquid in the 3 containers.
b. Estimate, and then find the difference between the amount of water in Container D and Container E. Model the problem with a tape diagram.
4. Shane watches a movie in the theater that is 115 minutes long, including the trailers. The chart to the right shows the length in minutes of each trailer.
a. Find the total number of minutes for all 5 trailers.
b. Estimate to find the length of the movie without trailers. Then

	Length in minutes
Trailer 1	5 minutes
Trailer 2	4 minutes
Trailer 3	3 minutes
Trailer 4	5 minutes
Trailer 5	4 minutes
Total	

c. Is your answer reasonable? Explain why.

COMMON CORE

Name \qquad Date \qquad

Rogelio drinks water at every meal. At breakfast he drinks 237 milliliters. At lunch he drinks 300 milliliters. At dinner he drinks 177 milliliters.
a. Estimate the total amount of water Rogelio drinks. Then find the actual amount of water he drinks at all 3 meals.
b. Estimate how much more water Rogelio drinks at lunch than at dinner. Then find how much more water Rogelio drinks at lunch than at dinner.

COMMON CORE

Name \qquad Date \qquad

1. There are 153 milliliters of juice in 1 carton. A 3-pack of juice boxes contains a total of 459 milliliters.
a. Estimate, and then find the total amount of juice in 1 carton and a 3-pack of juice boxes.
$153 \mathrm{~mL}+459 \mathrm{~mL} \approx$ \qquad $+$ \qquad $=$ \qquad
$153 \mathrm{~mL}+459 \mathrm{~mL}=$ \qquad
b. Estimate, and then find the difference between the amount in 1 carton and a 3-pack of juice boxes.
$459 \mathrm{~mL}-153 \mathrm{~mL} \approx$ \qquad $+$ \qquad = \qquad
$459 \mathrm{~mL}-153 \mathrm{~mL}=$ \qquad
c. Are your answers reasonable? Why?
2. Mr. Williams owns gas stations. He sells 367 liters of gas in the morning, 300 liters of gas in the afternoon, and 219 liters of gas in the evening.
a. Estimate, and then find the total amount of gas he sells in one day.
b. Estimate, and then find the difference between the amount of gas Mr. Williams sells in the morning and the amount he sells in the evening.

COMMON CORE
3. The Blue Team runs a relay. The chart shows the time in minutes that each team member spent running.
a. How many minutes does it take the Blue Team to run the relay?

Blue Team	Time in Minutes
Jen	5 minutes
Kristin	7 minutes
Lester	6 minutes
Evy	8 minutes
Total	

b. It takes the Red Team 37 minutes to run the relay. Estimate, and then find the difference in time between the 2 teams.
4. The lengths of 3 banners are shown to the right.
a. Estimate, and then find the total length of Banner A and Banner C.

Banner A	437 cm
Banner B	457 cm
Banner C	332 cm

b. Estimate, and then find the difference in length between Banner B and the total length of Banner A and Banner C. Model the problem with a tape diagram.

COMMON CORE

