Lesson 12

Objective: Round two-digit measurements to the nearest ten on the vertical number line.

Related Topics: More Lesson Plans for the Common Core Math

Suggested Lesson Structure

\square Fluency Practice	(9 minutes)
Concept Development	(41 minutes)
Student Debrief	$(10$ minutes)
Total Time	$(60$ minutes)

Fluency Practice (9 minutes)

- Rename the Tens 3.NBT. 3
- Halfway on the Number Line 3.NBT. 1 (5 minutes)

NOTES ON
 LESSON STRUCTURE:

This lesson does not include an Application Problem, but rather uses an extended amount of time for the Problem Set. The Problem Set provides an opportunity for students to apply their newly acquired rounding skills to measurement.

Rename the Tens (4 minutes)

Materials: (S) Personal white boards
Note: This activity anticipates rounding in Lessons 13 and 14 by reviewing unit form.
T: (Write 9 tens = \qquad .) Say the number.
S: 90.
Continue with the following possible sequence: 10 tens, 12 tens, 17 tens, 27 tens, 37 tens, 87 tens, 84 tens, 79 tens.

Halfway on the Number Line (5 minutes)

Materials: (S) Personal white boards
Note: This activity prepares students to round to the nearest ten in this lesson.
T: (Project a vertical line with ends labeled 10 and 20.) What number is halfway between 1 ten and 2 tens?
S: 15.
T: (Write 15, halfway between 10 and 20.)
Repeat process with ends labeled 30 and 40.
T: Draw a vertical number line on your personal boards and make tick marks at each end.

T: (Write 2 tens and 3 tens.) Label the ends and the halfway point.
S: (Label 20 as the bottom point, 30 as the top point, and 25 as the halfway point.)
Continue with 90 and 100.

Concept Development (41 minutes)

Materials: (T) 100-mL beaker, water (S) Personal white boards

Part 1: Round two-digit measurements to the nearest ten.

T: (Show a beaker holding 73 milliliters of water.) This beaker has 73 milliliters of water in it. Show the amount on a vertical number line. Draw a vertical number line, like in today's fluency practice. (Model a vertical number line with tick marks for endpoints and a halfway point.)
S: (Draw.)
T: How many tens are in 73?
S: 7 tens!
T : Follow along with me on your board. (To the right of the lowest tick mark, write $70=7$ tens.)
T : What is 1 more ten than 7 tens?
S: 8 tens!
T: (Write $80=8$ tens, to the right of the top tick mark.)
S: (Label.)
T: Which number is halfway between 7 tens and 8 tens?
S: 7 tens and 5 ones, or 75.
T: (Write $75=7$ tens 5 ones, to the right of the halfway point.) Label the halfway point.
T: Let's plot 73 on the number line. Remind me, what unit are we plotting on the number line?
S: Milliliters!
T: Say, "Stop!" when my finger points to where it should be. (Move finger up the number line from 70 toward 75.)
S: Stop!
T: (Plot and label, $73=7$ tens 3 ones.) Now that we know where 73 milliliters is, we can round the measurement to the nearest 10 milliliters. Look at your vertical number line. Is 73 milliliters more than halfway or less than halfway between 70 milliliters and 80 milliliters? Tell your partner how you know.

S: 73 milliliters is less than halfway between 70 and 80 milliliters. I know because 3 is less than 5 , and 5 marks halfway. $\rightarrow 73$ is 7 away from 80 , but only 3 away from 70.
$\mathrm{T}: \quad 73$ milliliters rounded to the nearest ten is 70 milliliters. Another way to say it is that 73 milliliters is about 70 milliliters. About means that 70 milliliters is not the exact amount.

Continue with the following possible sequence: 61 centimeters, 38 minutes, and 25 grams. For each example show how the vertical number line can be used even though the units have changed. Be sure to have a discussion about the convention of rounding numbers that end in 5 up to the next ten.

Problem Set (21 minutes)

Materials: (S) Problem Set, 4 bags of rice (premeasured at four different weights within 100 g), 4 containers of water (premeasured with four different liquid volumes within 100 mL), ruler, meter stick, blank paper, new pencil, digital scale measuring grams, $100-\mathrm{mL}$ beaker, demonstration clock, classroom wall clock

Description: Students move through different stations to measure using centimeters, grams, milliliters, and minutes as units. Then, they apply learning from the Concept Development to round each measurement to the nearest ten. Students use the ruler, a clock, a beaker, or a drawn vertical number line as tools for rounding to the nearest ten.

NOTES ON
 MULTIPLE MEANS OF REPRESENTATION:

For those students who have trouble conceptualizing halfway, demonstrate halfway using students as models. Two students represent the tens. A third student represents the number that is halfway. A fourth student represents the number being rounded. Discuss: Where does the student being rounded belong? When is the student more than halfway? Less than halfway? To which number would they round?

NOTES ON

MATERIALS:
Adjust the number of measurement materials at each station (ruler, meter stick, digital scale, beaker, demonstration clock) depending both on what is available to you and on the number of students working at each station at a given time.

Directions: Work with a partner and move through the following stations to complete the Problem Set. Measure, and then round each measurement to the nearest ten.

- Station 1: Measure and round metric length using centimeters. (Provide the four objects listed in Problem Set, rulers, and meter sticks.)
- Station 2: Measure and round weight using grams. (Provide four bags of rice labeled at various weights below 100 grams and digital scales that measure in grams.)
- Station 3: Measure and round liquid volume using milliliters. (Provide four containers of various liquid volumes below 100 milliliters and 100 -milliliter beakers for measuring.)
- Station 4: (Ongoing, students update the data for this station at Stations 1-3.) Record the exact time you start working at the first station, then the time you finish working at Stations 1, 2, and 3. Then round each time to the nearest 10 minutes. (Provide demonstration clocks or have students draw vertical number lines to round.)

Prepare students:

- Explain how to complete the problems using the examples provided in the Problem Set.
- Discuss how to perform the measurements at each station.
- Establish which tools you would like students to use for rounding at each station (or differentiate for individual pairs or students.)
- Clarify that students should ignore the numbers after the decimal point if scales measure more accurately than to the nearest gram because they are rounding whole numbers.

Note: Making an immediate connection between the actual measurement and the rounded measurement helps students see the value of rounding. This activity concretizes the relationship between a given number and its relationship to the tens on either side of it. They also see that when embedded within specific, real, and varied measurement contexts, 73 milliliters and 73 centimeters (rounded or not) have quite different meanings despite appearing nearly synonymous on the number line. Provide students with the language and guidance to engage in discussion that allows these ideas to surface.

Student Debrief (10 minutes)

Lesson Objective: Round two-digit measurements to the nearest ten on the vertical number line.

The Student Debrief is intended to invite reflection and active processing of the total lesson experience. Invite students to review their work in the Problem Set. They should compare answers with a partner before going over answers as a class. Look for misconceptions that can be addressed in the Debrief. Guide students in a conversation to debrief the Problem Set and process the lesson. You may choose to use any combination of the ideas below to lead the discussion.

- Discuss new vocabulary from today's lesson: round and about.
- Why is a vertical number line a good tool to use for rounding?
- How does labeling the halfway point help you to round?
- How did you round numbers that were the same as the halfway point?
- What are some real world situations where it would be useful to round and estimate?

NVS COMmon core mathematics curriculum		Wesson th Problemset 3-2	
Name Gina			
chart below.			
Object	$\begin{aligned} & \text { Measurement } \\ & (\mathrm{i} \mathrm{ncm}) \end{aligned}$	The object measures between (which two tens)	Length rounded to the nearest ten cm
Example: My shoe	23 cm	$\underline{20}$ and 30 cm	20 cm
Long side of a desk	61 cm	60 and 70 cm	60 cm
A new pencil	19 cm	10 and 20 cm	20 cm
Short side of a piece of paper	22 cm	20 and 30 cm	20 cm
Long side of a piece of paper	28 cm	20 and 30 cm	30 cm
2. Work with a partner. Use a digital scale to complete the chart below.			
${ }^{\text {Bag }}$	Measurement (ing)	The bag of rice measures between (which two tens)	Weight rounded to the nearest teng
Example: Bag A	88	0 and $\quad 10$ - B	10 g
Bag B	359	30 and 40 g	40 g
Bag C	829	80 and 90 -	80 g
Bag D	289	20 and 308	30 g
Bag E	$5 \lg$	$50 \text { and } 60^{8}$	50 g
3. Work with a partner. Use a beaker to complete the chart below.			

Exit Ticket (3 minutes)

After the Student Debrief, instruct students to complete the Exit Ticket. A review of their work will help you assess the students' understanding of the concepts that were presented in the lesson today and plan more effectively for future lessons. You may read the questions aloud to the students.

NTS COMMON CORE MATHEMATICS CURRICULUM		Lesson 12 Problem Set	$3 \cdot 2$
Container	Measurement (in mL)	The container measures between (which two tens)	Liquid volume rounded to the nearest ten mL
Example: Container A	33 mL	30 and ${ }^{40} \mathrm{~mL}$	30 mL
Container 8	67 mL	$60 \text { and }$ \qquad 70 mL	70 mL
Container C	12 mL	10 and 20 mL	10 mL
Container D	45 mL	$40 \text { and } 50 \mathrm{~mL}$	50 mL
Container E	94 mL	$90 \text { and } 100 \mathrm{~mL}$	90 mL

4. Work with a partner. Use a clock to complete the chart below.

Activity	Actual time	The a ativity measures between (which two tens)	Time rounded to the nearest ten minutes
Example: Time we started math	$10: 03$	$\underline{10: 00}$ and $10: 10$	$10: 00$
Time I started the Application Problems	$10: 34$	$\underline{10: 30}$ and $10: 40$	$10: 30$
Time I finished station 1	$10: 41$	$\underline{10: 40}$ and $10: 50$	$10: 40$
Time I finished station 2	$10: 48$	$\underline{10: 40}$ and $10: 50$	$10: 50$
Time I finished station 3	$10: 56$	$\underline{10: 50}$ and $11: 00$	$11: 00$

Name \qquad Date \qquad

1. Work with a partner. Use a ruler and/or a meter stick to complete the chart below.

Object	Measurement (in cm)	The object measures between (which two tens)...	Length Rounded to the Nearest 10 cm
Example: My shoe	23 cm	20 and 30_cm	20 cm
Long side of a desk		_ and \qquad cm	
A new pencil		and ___ cm	
Short side of a piece of paper		_ and \qquad cm	
Long side of a piece of paper		_ and ___ cm	

2. Work with a partner. Use a digital scale to complete the chart below.

Bag	Measurement (in g)	The bag of rice measures between (which two tens)...	Weight Rounded to the Nearest 10 g
Example: Bag A	8 g	0 and 10 g	10 g
Bag B		and ___ ${ }^{\text {g }}$	
Bag C		and ___ g	
Bag D		and ___ g	
Bag E		_ and ___ g	

3. Work with a partner. Use a beaker to complete the chart below.

Container	Measurement (in mL)	The container measures between (which two tens)...	Liquid Volume Rounded to the Nearest 10 mL
Example: Container A	33 mL	30 and 40 mL	30 mL
Container B		and \qquad mL	
Container C		and ___ mL	
Container D		and __m mL	
Container E		and ___ mL	

4. Work with a partner. Use a clock to complete the chart below.

Activity	Actual Time	The activity measures between (which two tens)...	Time Rounded to the Nearest 10 Minutes
Example: Time we started math	10:03	10:00 and 10:10	10:00
Time I started the Application Problems		and	
Time I finished Station 1		and	
Time I finished Station 2		and	
Time I finished Station 3		_ and	

Name \qquad Date \qquad
The weight of a golf ball is shown below.

a. The golf ball weighs \qquad .
b. Round the weight of the golf ball to the nearest ten grams. Model your thinking on the number line.
c. The golf ball weighs about \qquad .
d. Explain how you used the halfway point on the number line to round to the nearest ten grams.

Name \qquad Date \qquad

1. Complete the chart. Choose objects and use a ruler/meter stick to complete the last two on your own.

Object	Measurement (in cm)	The object measures between which two tens?	Length Rounded to the Nearest 10 cm
Length of desk	66 cm	and \qquad cm	
Width of desk	48 cm	and ___ cm	
Width of door	81 cm	and ___ cm	
		and ___ cm	
		and ___ cm	

2. Gym class ends at 10:27 a.m. Round the
time to the nearest 10 minutes.
3. Measure the liquid in the beaker to the
nearest 10 milliliters.
4. Mrs. Santos' weight is shown on the scale. Round the weight to the nearest 10 kilograms.

Mrs. Santos' weight is \qquad kilograms.

Mrs. Santos weighs about \qquad kilograms.
5. A zookeeper weighs a chimp. Round the chimp's weight to the nearest 10 kilograms.

The chimp's weight is \qquad kilograms.

The chimp weighs about \qquad kilograms.

