

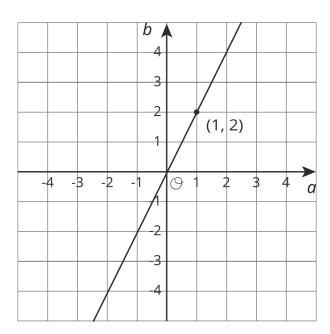
Unit 5, Lesson 7: Connecting Representations of **Functions**

Let's connect tables, equations, graphs, and stories of functions.

7.1: Which are the Same? Which are Different?

Here are three different ways of representing functions. How are they alike? How are they different?

1.
$$y = 2x$$



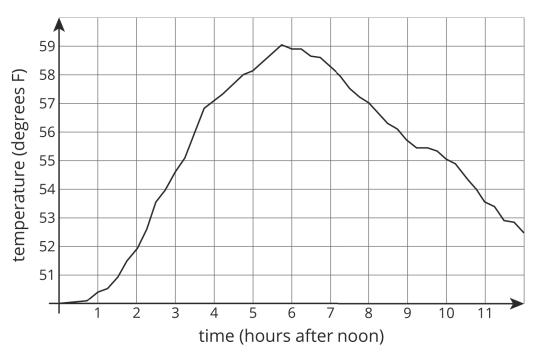
2.

p	-2	-1	0	1	2	3
q	4	2	0	-2	-4	-6

3.

7.2: Comparing Temperatures

The graph shows the temperature between noon and midnight in City A on a certain day.



The table shows the temperature, T, in degrees Fahrenheit, for h hours after noon, in City B.

h	1	2	3	4	5	6
T	82	78	75	62	58	59

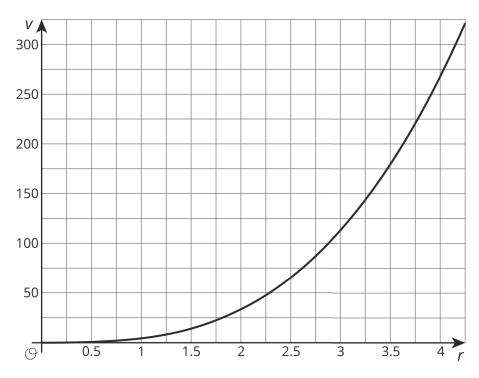
- 1. Which city was warmer at 4:00 p.m.?
- 2. Which city had a bigger change in temperature between 1:00 p.m. and 5:00 p.m.?
- 3. How much greater was the highest recorded temperature in City B than the highest recorded temperature in City A during this time?
- 4. Compare the outputs of the functions when the input is 3.

7.3: Comparing Volumes

m.openup.org/1/8-5-7-3

The volume, V, of a cube with edge length s cm is given by the equation $V=s^3$.

The volume of a sphere is a function of its radius (in centimeters), and the graph of this relationship is shown here.



- 1. Is the volume of a cube with edge length s=3 greater or less than the volume of a sphere with radius 3?
- 2. If a sphere has the same volume as a cube with edge length 5, estimate the radius of the sphere.
- 3. Compare the outputs of the two volume functions when the inputs are 2.

Are you ready for more?

Estimate the edge length of a cube that has the same volume as a sphere with radius 2.5.

7.4: It's Not a Race

Elena's family is driving on the freeway at 55 miles per hour.

Andre's family is driving on the same freeway, but not at a constant speed. The table shows how far Andre's family has traveled, d, in miles, every minute for 10 minutes.

t	1	2	3	4	5	6	7	8	9	10
d	0.9	1.9	3.0	4.1	5.1	6.2	6.8	7.4	8	9.1

1. How many miles per minute is 55 miles per hour?

2. Who had traveled farther after 5 minutes? After 10 minutes?

3. How long did it take Elena's family to travel as far as Andre's family had traveled after 8 minutes?

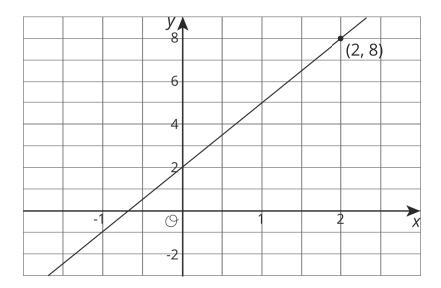
4. For both families, the distance in miles is a function of time in minutes. Compare the outputs of these functions when the input is 3.

Lesson 7 Summary

Functions are all about getting outputs from inputs. For each way of representing a function—equation, graph, table, or verbal description—we can determine the output for a given input.

Let's say we have a function represented by the equation y = 3x + 2 where y is the dependent variable and x is the independent variable. If we wanted to find the output that goes with 2, we can input 2 into the equation for x and finding the corresponding value of y. In this case, when x is 2, y is 8 since $3 \cdot 2 + 2 = 8$.

If we had a graph of this function instead, then the coordinates of points on the graph are the input-output pairs. So we would read the y-coordinate of the point on the graph that corresponds to a value of 2 for x. Looking at the graph of this function here, we can see the point (2,8) on it, so the output is 8 when the input is 2.



A table representing this function shows the input-output pairs directly (although only for select inputs).

X	-1	0	1	2	3
у	-1	2	5	8	11

Again, the table shows that if the input is 2, the output is 8.

OPEN-UP

NAME DATE PERIOD

Unit 5, Lesson 7: Connecting Representations of Functions

1. The equation and the tables represent two different functions. Use the equation b = 4a - 5 and the table to answer the questions. This table represents c as a function of a.

а	-3	0	2	5	10	12
С	-20	7	3	21	19	45

- a. When a is -3, is b or c greater?
- b. When c is 21, what is the value of a? What is the value of b that goes with this value of a?
- c. When a is 6, is b or c greater?
- d. For what values of a do we know that c is greater than b?
- 2. Match each function rule with the value that could *not* be a possible input for that function.
 - A. 3 divided by the input

- 1.3
- B. Add 4 to the input, then divide this value into 3
- 2. 4
- C. Subtract 3 from the input, then divide this value into 1
- 3. -4

4.0

5. 1

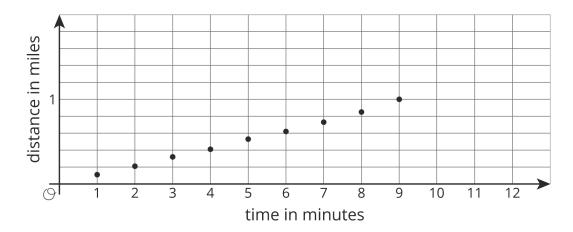
(from Unit 5, Lesson 2)

3. Elena and Lin are training for a race. Elena runs her mile a constant speed of 7.5 miles per hour.

Lin's times are recorded every minute:

time (minutes)	1	2	3	4	5	6	7	8	9
distance (miles)	0.11	0.21	0.32	0.41	0.53	0.62	0.73	0.85	1

- a. Who finished their mile first?
- b. This is a graph of Lin's progress. Draw a graph to represent Elena's mile on the same axes.



- c. For these models, is distance a function of time? Is time a function of distance? Explain how you know.
- 4. Find a value of *x* that makes the equation true:

$$-(-2x+1) = 9 - 14x$$

Explain your reasoning, and check that your answer is correct.

(from Unit 4, Lesson 4)