Please check the examination details belo	ow before entering your candidate information
Candidate surname	Other names
Pearson Edexcel International GCSE (9–1)	tre Number Candidate Number
Wednesday 12	June 2019
Morning (Time: 1 hour 15 minutes)	Paper Reference 4CH1/2C
Chemistry Unit: 4CH1 Paper 2C	
You must have: Calculator, ruler	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

Information

- The total mark for this paper is 70.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

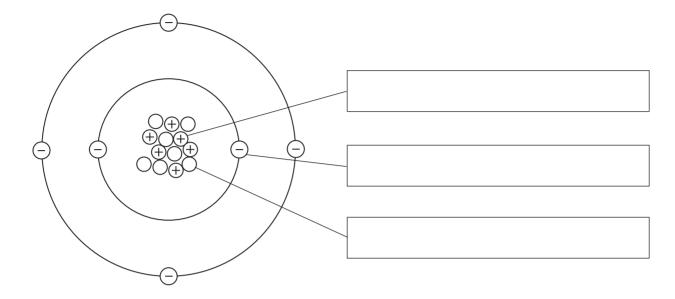
Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

P58563A
©2019 Pearson Education Ltd.

	ments
	<u> 6</u>
Ī	<u>П</u>
117	lthe
	O
	a D E
ŀ	10
	Tell
	_ _
Ē	


0	4 He helium 2	20 Ne neon 10	40 Ar argon 18	84 Kr krypton 36	131 Xe xenon 54	[222] Rn radon 86	fully
		19 fluorine 9	35.5 CI chlorine 17	80 Br bromine 35	127 	[210] At astatine 85	orted but not
9		16 O oxygen 8	32 s 16	79 Se selenium 34	128 Te tellurium 52	[209] Po polonium 84	ve been repo
2		14 N nitrogen 7	31 P phosphorus 15	75 As arsenic 33	Sb antimony 51	209 Bi bismuth 83	s 112-116 hav authenticated
4		12 C carbon 6	28 Si silicon 14	73 Ge germanium 32	Sn th 50	207 Pb lead 82	mic numbers a
က		11 B boron	27 AI aluminium 13	70 Ga gallium 31	115 In indium 49	204 T thallium 81	Elements with atomic numbers 112-116 have been reported but not fully authenticated
	!			65 Zn zinc 30	112 Cd cadmium 48	201 Hg mercury 80	Elem
				63.5 Cu copper 29	108 Ag silver 47	197 Au gold 79	Rg roentgenium
				59 nickel 28	106 Pd palladium 46	195 Pt platinum 78	Ds damstadtum 110
				59 Co cobalt 27	103 Rh rhodium 45	192 Ir iridium 77	[268] Mt meitnerium 109
	1 X hydrogen 1			56 iron 26	Ru ruthenium 44	190 Os osmium 76	[277] Hs hassium 108
ı				55 Mn manganese 25	[98] Tc technetium 43	186 Re rhenium 75	[264] Bh bohrium 107
		nass ool umber		52 Cr chromium 24	96 Mo molybdenum 42	184 W tungsten 74	[266] Sg seaborgium 106
	Key	relative atomic mass atomic symbol name atomic (proton) number		51 V vanadium 23	93 Nb niobium 41	181 Ta tantalum 73	[262] Db dubnium 105
		relativ ato atomic		48 Ti titanium 22	91 Zr zirconium 40	178 Hf hafnium 72	[261] Rf rutherfordium 104
	'		•	45 Sc scandium 21	89 ×	139 La* lanthanum 57	[227] Ac* actinium 89
7		9 Be beryllium 4	24 Mg magnesium 12	40 Ca calcium 20	Sr strontium 38	137 Ba barium 56	[226] Ra radium 88
_		7 Li lithium 3	23 Na sodium 11	39 K potassium 19	85 Rb rubidium 37	133 Cs caesium 55	[223] Fr francium 87

^{*} The Ianthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.

Answer ALL questions. Write your answers in the spaces provided.

1 The diagram shows the particles in an atom of an element.

(a) The box gives the names of some particles.

electron ion molecule neutron proton

Use words from the box to label the diagram.

(3)

(b) Give the mass number of this atom.

(1)

(c) Complete the sentence about isotopes.

(2)

Isotopes are atoms that have the same number of

(Total for Question 1 = 6 marks)

DO NOT WRITE IN THIS AREA

2 The table gives some information about the halogens, chlorine, bromine and iodine.

Halogen	Physical state at room temperature	Colour
chlorine	gas	pale green
bromine		red-brown
iodine	solid	

(a) Complete the table	table	the	lete	Comp	(a)
------------------------	-------	-----	------	------	-----

(2)

(b) Chlorine has two isotopes of mass numbers 35 and 37

The relative percentage of each isotope in a sample of chlorine is

chlorine-35 77.78%

chlorine-37 22.22%

Calculate the relative atomic mass of this sample of chlorine.

Give your answer to one decimal place.

(3)

relative atomic mass =

(c) A student is given an aqueous solution of chlorine and an aqueous solution of potassium bromide.

Explain how he can use these two solutions to compare the reactivity of chlorine with the reactivity of bromine.

(4)

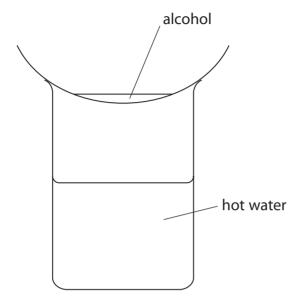
(Total for Question 2 = 9 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

BLANK PAGE

DO NOT WRITE IN THIS AREA


(2)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Methanol, ethanol, propanol and butanol are alcohols. They are all liquids that evaporate easily when warmed.

A student uses this apparatus to compare the time taken for the four liquids to evaporate.

She uses this method.

- pour some methanol into an evaporating basin
- place the evaporating basin on top of a beaker containing hot water
- measure the time taken for the methanol to evaporate completely
- repeat the experiment with each of the other alcohols, using the same apparatus
- (a) State two variables the student should control to make sure her results are valid.

1______

(b) State why it is not safe to heat the evaporating basin directly with a Bunsen flame. (1)

(c) The table shows the results of experiments done by four students, A, B, C and D.

	Formula	-	Γime taken	for liquid to	o evaporate	in s
Alcohol	of alcohol	Student A	Student B	Student C	Student D	Mean time in s
methanol	CH₃OH	20	24	22	26	23
ethanol	C₂H₅OH	32	34	35	30	33
propanol	C₃H ₇ OH	45	47	50	48	48
butanol	C ₄ H ₉ OH	64	63	90	60	

(i) Calculate the mean (average) time for butanol to evaporate.

(2)

mean time =	S
-------------	---

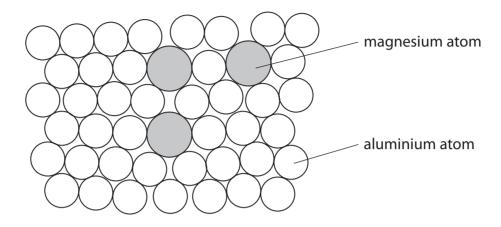
(ii) Explain how the results show which alcohol evaporates most easily.

(2)

(iii) State the relationship between the number of carbon atoms in the molecule and how easily the alcohol evaporates.

(2)

(Total for Question 3 = 9 marks)



DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

4	Thi	is q	uestion is about metals.	
	(a)	Wł	nich statement describes metallic bonding?	
				(1)
	X	A	electrostatic attraction between oppositely charged ions	
	X	В	electrostatic attraction between the nuclei of two atoms and a pair of electrons shared between them	
	X	C	electrostatic attraction between positively charged particles and delocalised el	ectrons
	X	D	electrostatic attraction between atoms	
	(b)		uminium is malleable and can be easily shaped to make saucepans used for oking food.	
			ate two other properties of aluminium that make it suitable for saucepans used cooking food.	
				(2)
1				
2				

(c) Magnalium is an alloy of aluminium and magnesium.The diagram shows how the atoms are arranged in this alloy.

(i) State what is meant by the term **alloy**.

(1)

(ii) Explain why magnalium is harder than aluminium.

(3)

(Total for Question 4 = 7 marks)

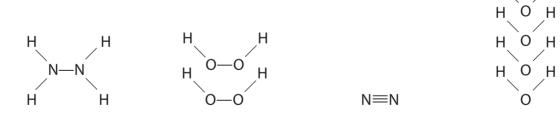
4H₂O

DO NOT WRITE IN THIS AREA

5 During the Second World War, engineers developed a rocket-powered aircraft.

The aircraft carried these two liquids

- hydrazine, N₂H₄
- hydrogen peroxide, H₂O₂


When these two liquids mix in the combustion chamber, they evaporate and then react rapidly to form nitrogen gas, N_2 , and steam, H_2O

The reaction is exothermic.

The equation for the reaction is

$$N_2H_4$$
 + $2H_2O_2$

The displayed formulae for the reactants and products are

 N_2

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(a) The tables give the bond energies for the bonds broken in the reactants and the bonds made in the products.

	Bonds broken
bond	bond energy in kJ/mol
N—N	159
N—H	391
0—0	143
О—Н	463

Bonds	made
bond	bond energy in kJ/mol
N≡N	945
О—Н	463

(i) Use the data in the tables to calculate the total amount of energy required to break all of the bonds in the reactants.

(1)

(ii) Use the data in the tables to calculate the total amount of energy released when all of the bonds in the products are made.

(1)

(iii) Calculate the enthalpy change, ΔH , in kJ/mol, for the reaction. Include a sign in your answer.

(3)

$$\Delta H =$$
 kJ/mol

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(b) Explain, in terms of bonds broken and bonds made, why this reaction is exothermic.

(2)

(c) Draw an energy level diagram for the reaction between N₂H₄ and H₂O₂

(3)

energy

(Total for Question 5 = 10 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

BLANK PAGE

DO NOT WRITE IN THIS AREA

6 Some cars in Brazil use ethanol, C₂H₅OH, as a fuel instead of petrol. The ethanol is made by the fermentation of glucose which is obtained from sugar cane. The sugar is extracted from the sugar cane and then dissolved in water to make a sugar solution.

(a) (i) Name the substance that is added to the sugar solution that causes glucose to ferment.

(ii) Which temperature is the most suitable for fermentation?

(1)

- 0°C
- 10°C
- 30°C
- **D** 80°C

(iii) Explain why fermentation is done in the absence of air.

(2)

(b) (i) State what is meant by the term **fuel**.

(1)

(ii) Write a chemical equation for the complete combustion of ethanol in air.

(2)

(c) Ethanol is also manufactured by reacting steam with ethene, C	. ₂ H ₂
The equation for this reaction is	
$C_2H_4(g) + H_2O(g) \rightarrow C_2H_5OH(g)$	

State the conditions of temperature and pressure used in this process.

(2)

temperature

(d) When ethanol is heated with acidified potassium dichromate(VI), it is oxidised to ethanoic acid.

(i) State the colour change that occurs in the potassium dichromate(VI) during this reaction.

(1)

from ______to ____

(ii) The structural formula of ethanoic acid is CH₃COOH

Draw the displayed formula of ethanoic acid.

(2)

(iii) Complete the equation for the reaction of ethanoic acid with sodium.

(2)

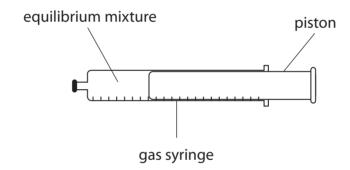
......CH₃COOH(aq) +Na(s) \rightarrow (aq) +(g)

(Total for Question 6 = 14 marks)

DO NOT WRITE IN THIS AREA

7 Dinitrogen tetraoxide, N_2O_4 , is a colourless gas.

Nitrogen dioxide, NO₂, is a brown gas.


The two gases can exist together in dynamic equilibrium according to the equation

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

(a) Explain what is meant by the term **dynamic equilibrium**.

(2)

(b) Some N_2O_4 and some NO_2 are put into a sealed gas syringe and allowed to form an equilibrium mixture.

This equilibrium mixture is brown.

(i) The pressure of the gas in the syringe is increased by pushing in the piston. The mixture is then allowed to reach a new equilibrium at the same temperature as before.

Explain why the new equilibrium mixture contains less NO₂ than the original equilibrium mixture.

(2)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(ii) A student suggests that the new equilibrium mixture would be lighter in colour than the original equilibrium mixture, as there is now less NO ₂ present. Suggest why the new equilibrium mixture is actually darker than the original.	
	(1)
Carbon monoxide, CO, and oxides of nitrogen are produced in a car engine when petrol is burned.	
These oxides can be partly removed by using a catalytic converter fitted to the car's exhaust system.	
(i) State how oxides of nitrogen are produced in the car engine.	(1)
(ii) Give a disadvantage of allowing oxides of nitrogen to escape into the atmosp	here. (1)
(iii) Write a chemical equation for the reaction between nitrogen monoxide, NO, and carbon monoxide to form carbon dioxide and nitrogen.	(1)
(Total for Question 7 = 8 ma	arks)

8 The concentration of NaClO(aq) in a solution of bleach is found by reacting it with hydrochloric acid.

The equation for the reaction is

$$NaClO(aq) + 2HCl(aq) \rightarrow NaCl(aq) + H_2O(l) + Cl_2(g)$$

An excess of dilute hydrochloric acid is added to 4.00 cm³ of bleach solution.

60.0 cm³ of chlorine gas is produced.

(a) Explain a safety precaution that should be taken when doing this experiment.

(2)

(b) (i) Calculate the amount, in moles, of chlorine gas produced. Assume one mole of chlorine gas occupies 24 000 cm³.

(2)

amount of chlorine = mol

(ii) Determine the amount, in moles, of NaClO in 4.00 cm³ of bleach.

(1)

amount of NaClO = mol

(iii) Calculate the concentration, in mol/dm³, of the bleach solution.

(2)

concentration = mol/dm³

(Total for Question 8 = 7 marks)

TOTAL FOR PAPER = 70 MARKS

BLANK PAGE